NiO is a promising material for spintronic devices, where signals are transmitted not by electrical currents but rather by spin waves, consisting of propagating disturbances in the ordering of magnetic materials, in a domino-like fashion. The interdisciplinary team of researchers, led by Alexander Balandin, distinguished professor of electrical and computer engineering, used ultraviolet Raman spectroscopy to investigate how spin ordering affects the energies of phonons in these materials. Phonons are quanta of vibrations of ions, which constitute the crystal lattice of materials. Phonons can interact with electrons and their spins, leading to energy dissipation. Practical applications of spintronic devices in information processing require accurate knowledge of the strength of the electron spin interaction with phonons. Read More…