The vibrational motion of an atom in a crystal propagates to neighboring atoms, which leads to wavelike propagation of the vibrations throughout the crystal. The way in which these natural vibrations travel through the crystalline structure determine fundamental properties of the material. For example, these vibrations determine how well heat and electrons can traverse the material, and how the material interacts with light. Now, researchers have shown that by swapping out just a small fraction of a material’s atoms with atoms of a different element, they can control the speed and frequencies of these vibrations. This demonstration, published in Applied Physics Letters, by AIP Publishing, provides a potentially simpler and cheaper way to tune a material’s properties, allowing for a wide range of new and more efficient devices, such as in solid-state lighting and electronics. Read More…